Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
819655 | Composites Part B: Engineering | 2007 | 7 Pages |
Constitutive equations describe intrinsic relationships among sets of material system parameters. This study utilizes artificial neural networks in place of a traditional micromechanical approach to calculate the global (macroscopic) elastic properties of composite materials given the local (microscopic) properties and local geometry. This approach is shown to be more computationally efficient than conventional numerical micromechanical approaches. An eight sub-celled representative volume element is used for the local geometry. Multi target artificial neural networks (MTANNs) and single target artificial neural networks are studied for applicability in predicting the global properties. The best performing MTANN achieves a precision of 9%. The single target artificial neural networks (STANNs) perform best and predicts the global properties within a target error of 5.3%. The computation time is 1.8 s for all six STANNs to predict six global properties for 19,683 different microstructures.