Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
819664 | Composites Part B: Engineering | 2007 | 9 Pages |
Previously developed micromechanical methods for stiffness and strength prediction are adapted for analysis of multi-layer plain weave textile composites. Utilizing the direct micromechanics method (DMM) via finite element modeling, three methods are presented: (a) direct simulation of a multi-layer plain weave textile composite; (b) micromechanical analysis of a single layer of interest from the force and moment resultants acting on that layer; and (c) application of the previously developed quadratic stress-gradient failure theory to the layer of interest. In comparison to direct modeling, the other two techniques show only 5% difference over a number of random test cases. Several practical design examples of strength prediction are included to illustrate the importance and accuracy of method implementation.