Article ID Journal Published Year Pages File Type
8198085 Physics Letters B 2006 8 Pages PDF
Abstract
We consider the determination of the solar neutrino oscillation parameters Δm212 and θ12 by studying oscillations of reactor anti-neutrinos emitted by nuclear power plants (located mainly in France) with a detector installed in the Frejus underground laboratory. The performances of a water Čerenkov detector of 147 kt fiducial mass doped with 0.1% of gadolinium (MEMPHYS-Gd) and of a 50 kt scale liquid scintillator detector (LENA) are compared. In both cases 3σ uncertainties below 3% on Δm212 and of about 20% on sin2θ12 can be obtained after one year of data taking. The gadolinium doped Super-Kamiokande detector (SK-Gd) in Japan can reach a similar precision if the SK/MEMPHYS fiducial mass ratio of 1 to 7 is compensated by a longer SK-Gd data taking time. Several years of reactor neutrino data collected by MEMPHYS-Gd or LENA would allow a determination of Δm212 and sin2θ12 with uncertainties of approximately 1% and 10% at 3σ, respectively. These accuracies are comparable to those that can be reached in the measurement of the atmospheric neutrino oscillation parameters Δm312 and sin2θ23 in long-baseline superbeam experiments.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, ,