Article ID Journal Published Year Pages File Type
8202053 Annals of Physics 2015 9 Pages PDF
Abstract
The effect of strain on the Landau levels (LLs) spectra in graphene is studied, using an effective Dirac-like Hamiltonian which includes the distortion in the Dirac cones, anisotropy and spatial-dependence of the Fermi velocity induced by the lattice change through a renormalized linear momentum. We propose a geometrical approach to obtain the electron's wave-function and the LLs in graphene from the Sturm-Liouville theory, using the minimal substitution method. The coefficients of the renormalized linear momentum are fitted to the energy bands, which are obtained from a Density Functional Theory (DFT) calculation. In particular, we evaluate the case of Dirac cones with an ellipsoidal transversal section resulting from uniaxially strained graphene along the Arm-Chair (AC) and Zig-Zag (ZZ) directions. We found that uniaxial strain in graphene induces a contraction of the LLs spectra for both strain directions. Also, is evaluated the contribution of the tilting of Dirac cone axis resulting from the uniaxial deformations to the contraction of the LLs spectra.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , ,