Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8202916 | Comptes Rendus Physique | 2016 | 12 Pages |
Abstract
L'hélium solide est paradoxal : c'est à la fois un cristal modèle et une exception. C'est un modèle pour l'étude des propriétés cristallines à cause de son extrême pureté, qui rend certains phénomènes universels plus simples et plus faciles à identifier. C'est aussi un système exceptionnel, car les fluctuations quantiques de ses atomes autour des nÅuds du réseau cristallin permettent à ces phénomènes d'avoir lieu à très basse température, avec une amplitude particulièrement grande. Comme l'avait remarqué Jacques Friedel en 2013, les propriétés des cristaux d'hélium 4 illustrent la manière dont le mouvement des dislocations peut réduire leur module élastique de cisaillement transverse, comme dans tout cristal hexagonal compact (hcp), y compris certains métaux. Mais ce mouvement a lieu sans dissipation lorsque la température tend vers zéro et en l'absence totale d'impuretés, ce qui est exceptionnel et conduit à une anomalie élastique qui a été appelée « plasticité géante » par Haziot et al. en 2013. Plus récemment, nous avons découvert que, dans ces cristaux d'hélium 4, les impuretés d'hélium 3 ne sont pas nécessairement des points d'ancrage fixes pour les dislocations. Même à relativement grande vitesse, les dislocations sont capables de se déplacer habillées d'hélium 3, comme un collier de perles atomiques à travers le réseau périodique. Cela illustre ce qui est vraiment quantique dans ces cristaux : il s'agit principalement de la dynamique de leurs dislocations et du comportement des impuretés.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Sébastien Balibar, John Beamish, Andrew Fefferman, Ariel Haziot, Xavier Rojas, Fabien Souris,