Article ID Journal Published Year Pages File Type
8202991 Physics Letters A 2018 6 Pages PDF
Abstract
In structure, a [n]cycloparaphenylene ([n]CPP) molecule is constructed by fully conjugated bent benzenes, i.e., hexangular rings. Based on first-principles calculations, the spin-dependent electronic transport of transition metal-doped CPP, X@[6]cycloparaphenylene (X@[6]CPP) (X = Fe, Co and Ni), contacted with Au electrodes is investigated. (Multiple) negative differential resistance (NDR) is observed for all the doping cases, suggesting it is the intrinsic feature of such systems. Due to the spin dependence of the NDR, electrical switch of the direction of spin polarization for a current is realized. Further analysis shows that it is the suppression of the transmission peaks around the Fermi level as the bias increases that results in the NDR. The suppression is caused by the decay of the local density of states on the scattering region. As electrically controlled spin polarization is a promising area in nanoelectronics, we believe our results would be quite beneficial to the development of spintronic devices.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , , ,