Article ID Journal Published Year Pages File Type
820620 Composites Science and Technology 2012 6 Pages PDF
Abstract

This paper presents an experimental study into a new type of stitched fibre–polymer laminate that combines high interlaminar toughness with self-healing repair of delamination damage. Poly(ethylene-co-methacrylic acid) (EMAA) filaments were stitched into carbon fibre/epoxy laminate to create a three-dimensional self-healing fibre system that also provides high fracture toughness. Double cantilever beam testing revealed that the stitched EMAA fibres increased the mode I interlaminar fracture toughness (by ∼120%) of the laminate, and this reduced the amount of delamination damage that must subsequently be repaired by the self-healing stitches. The 3D stitched network was effective in delivering self-healing EMAA material extracted from the stitches into the damaged region, and this resulted in high recovery in the delamination fracture toughness (∼150% compared to the original material). The new self-healing stitching method provides high toughness which resists delamination growth while also having the functionality to repeatedly repair multiple layers of damage in epoxy matrix laminates.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,