Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
820623 | Composites Science and Technology | 2012 | 7 Pages |
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.