Article ID Journal Published Year Pages File Type
820635 Composites Science and Technology 2013 7 Pages PDF
Abstract

Bio-based polyester (BE) was synthesized through polycondensation using the plant-derived resources as the starting materials. Vapor grown carbon nanofiber (VGCF) was then incorporated into BE to prepare BE/VGCF composites by simple melting blending. The uniform dispersion of VGCF and fairly strong interfacial adhesion between BE and VGCF led to a significant improvement in the mechanical properties of the composites. Besides, the incorporation of VGCF successfully converted the insulating BE into electrically conductive composites with a percolation threshold of 2.5 vol.%. The composites showed excellent electroactive shape memory properties, which reached a shape recovery ratio of 97% within 90 s with a direct current voltage of 20 V. The combination of the significantly improved mechanical properties and excellent electroactive shape memory performance of BE/VGCF composites opens up the new opportunity for the electroactive actuator materials in a sustainable manner.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,