Article ID Journal Published Year Pages File Type
820696 Composites Science and Technology 2012 10 Pages PDF
Abstract
The electrical conductivity (EC) of continuous carbon fibre (CF) layers is highly anisotropic and is expressed by a second order tensor. In the present work, using continuity equation for anisotropic media, the electrical conductivity of a dry CF multilayer preform can be predicted. Hence, the electrical conductivity tensor of the CF preform can be calculated for any stacking sequence. By means of the calculated electrical conductivity tensor of the multilayer preform, the elliptical form of the governing equation can be solved numerically. Based on this, the generated heat (Joule effect) can be determined. Introducing the generated heat into the heat transfer equation, the temperature field over the CF preform can be predicted. For the experimental verification, a thermal camera was used to record the temperature field developed on a CF multilayer preform under given electric potential field. The experimental results were compared to the respective numerical calculations of the temperature field, where the electrical conductivity tensor was calculated analytically based on the proposed methodology. In all the tested cases the calculated electrical conductivity tensor leads to a numerical model which is in excellent agreement with the experimental results.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,