Article ID Journal Published Year Pages File Type
8209021 Applied Radiation and Isotopes 2016 11 Pages PDF
Abstract
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n)186Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105 °C, 12 h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24 h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , , , , , , , ,