Article ID Journal Published Year Pages File Type
8209639 Applied Radiation and Isotopes 2015 4 Pages PDF
Abstract
It is shown that the gamma-ray linear attenuation coefficient of a sample with unknown chemical composition can be determined through a systematic calibration of the correlation between the linear attenuation coefficient, gamma-ray energy and the relative degree of attenuation. For calibration, H2O, MnO2, NaCl, Na2CO3 and (NH4)2SO4 were used as reference materials. Point-like gamma-ray sources with modest activity of approximately 37 kBq, along with an HPGe detector, were used in the measurements. A semi-empirical formula was derived to calculate the linear attenuation coefficients as a function of the relative count rate and the gamma-ray energy. The method was applied to the determination of the linear attenuation coefficients for K2CrO4 and SiO2 test samples in the same setup used in calibration. The experimental result agreed well with the ones calculated by elementary data.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, ,