Article ID Journal Published Year Pages File Type
8210289 Applied Radiation and Isotopes 2014 8 Pages PDF
Abstract
In order to address the interference problem, a common and well-known method was used in order to show the need for sufficient decontamination. An improvement was achieved by taking the sample through two initial strontium separations in order to increase the decontamination factor. This method determines the activity concentration of 89Sr and 90Sr, via its daughter nuclide 90Y, by Cherenkov counting. This work is primarily based on theoretical calculations of strontium-, yttrium- and other potential interfering radionuclide ratios after instant fission. The work done to confirm the theoretical calculations were carried through on spiked strontium standard solutions and fresh reactor coolant water. The reactor coolant water was known to contain interferences at a composition resembling that of instant fission. The detection limit for double separation was calculated to 0.17 Bq/kg for 90Sr and 0.38 Bq/kg for 89Sr. When using methods that solely rely on strontium resins, this paper shows that the decontamination factor (DF) is significantly higher when using double separation than that of a single separation. The paper also shows that the DF of an initial double strontium separation is as effective when it comes to removing high ratio interferences as separations done with both Sr- and Ln-resin (EiChrom Technologies, Inc., 2003, Tovedal et al., 2009b). However, 'old' samples, where e.g. 140Ba and 89Sr has decayed, does not benefit from double separation. Furthermore, samples with low ratios of interfering radionuclides does not benefit from using this method either, seeing as this is a more time consuming method due to the double separations.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,