| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 821135 | Composites Science and Technology | 2011 | 7 Pages |
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.
