Article ID Journal Published Year Pages File Type
821136 Composites Science and Technology 2011 5 Pages PDF
Abstract

Composites of Nylon-12 reinforced with 4 wt.% carbon black (CB) manufactured by selective laser sintering (SLS) are compared in terms of flexural strength and flexural modulus, tensile strength and tensile modulus, and impact strength to composites made by extrusion and injection molding (Ex-IM). The Nylon-12 system made by SLS had 25% and 35% higher flexural and tensile modulus, respectively, compared to the Nylon-12 system made by Ex-IM and ∼10% higher strength. However, upon addition of CB both the modulus and the strength of the composites made by SLS were significantly lower compared to composites made by Ex-IM. This is due to the poor dispersion of nanoscale CB and due to the higher porosity of the composites made by SLS, which also explains the relatively low impact strength observed. Based on XRD and DSC studies, it is concluded that the composites made by the two processing methods did not differ significantly in their crystallization characteristics such as the degree of crystallinity, crystal type, and lamellar thickness. However, it was found that CB acted as a nucleating agent for Nylon-12 when Ex-IM was used, leading thus to smaller but more numerous polymer crystals.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,