Article ID Journal Published Year Pages File Type
821215 Composites Science and Technology 2010 6 Pages PDF
Abstract

Many analytical models replace carbon nanotubes with “effective fibers” to bridge the gap between the nano and micro-scales and allow for the calculation of the elastic properties of nanocomposites using micromechanics. Although curvature of nanotubes can have a direct impact on these properties, it is typically ignored. In this work, the nanotube geometry in 3D is included in the calculation of the elastic properties of a modified effective fiber. The strain energy of the nanotube and the effective fiber are calculated using Castligiano’s theorem and constraints imposed by the matrix on the deformation are taken into consideration. Model results are compared to results from archived literature, and a reasonable agreement is observed. Results show that the effect of nanotube curvature on reducing the modulus of the effective fiber is not limited to in-plane curvature but also to curvature in 3D. The impact of the nanotube curvature on the elastic properties of nanocomposites is studied utilizing the modified fiber model and the approach developed by Mori–Tanaka. Analytical results show that for a low weight fraction of nanotubes the effect of curvature seems to be minor and as the weight fraction increases, the effect of nanotube curvature becomes critical.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,