Article ID Journal Published Year Pages File Type
821269 Composites Science and Technology 2010 8 Pages PDF
Abstract

Four novel cylinder-ligament honeycombs are described, where each cylinder has 3 tangentially-attached ligaments to form either a hexagonal or re-entrant hexagonal cellular network. The re-entrant cylinder-ligament honeycombs are reported for the first time. The in-plane linear elastic constants and out-of-plane bending response of these honeycombs are predicted using finite element (FE) modelling and comparison made with hexagonal and re-entrant hexagonal honeycombs without cylinders. A laser-crafted re-entrant cylinder-ligament honeycomb is manufactured and characterized to verify the FE model. The re-entrant honeycombs display negative Poisson’s ratios and synclastic curvature upon out-of-plane bending. The hexagonal and ‘trichiral’ honeycombs possess positive Poisson’s ratios and anticlastic curvature. The ‘anti-trichiral’ honeycomb (short ligament limit) displays negative Poisson’s ratios when loaded in the plane of the honeycomb, but positive Poisson’s ratio behaviour (anticlastic curvature) under out-of-plane bending. These responses are understood qualitatively through considering deformation occurs via direct ligament flexure and cylinder rotation-induced ligament flexure.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,