| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 821510 | Composites Science and Technology | 2009 | 7 Pages |
In the first of this two part sequel, experimental results pertaining to the compressive response and failure of Z-pinned S-Glass fiber, plain-weave laminated composites are presented. These experiments are motivated by a need to understand the effect of Z-pinning on the strength and stiffness of these composites. A series of experiments are performed based upon density of the Z-pins and the diameter of the Z-pins. It is concluded that the damage zone around a Z-pin plays an important role in influencing the stiffness and strength of the Z-pin composite. In part 2 of this sequel, a 3D finite element (FE) based numerical model (based upon the composite microstructure acquired from scanning electron micrograph-SEM images) are used to capture details of the observed failure mechanisms and to provide predictions of the stiffness and strength of the composite.
