Article ID Journal Published Year Pages File Type
821570 Composites Science and Technology 2010 7 Pages PDF
Abstract

In this article, a quantitative measurement of orientation functions for both the polymer matrix and the filler has been carried out, for the first time, in high-density polyethylene (HDPE)/inorganic whisker (SMCW) composite fibers, with aid of polarized Fourier transform infrared (FTIR) spectroscopy. A highly oriented structure was observed in the as-spun fibers, and the orientation functions of both polyethylene and the whisker decreased with the increase of whisker content. During tensile deformation of the fibers, the orientation functions were continuously enhanced as increasing of the strain for the matrix and the filler. However, a fast increase of orientation was found for pure polyethylene fiber and composite fibers with less whisker content, and a slow increase for composite fibers with higher whisker content. Very interestingly, a formation of hybrid shish-kebab structure with whisker acting as shish and polyethylene lamellae as kebab was observed in the as-spun fiber with low loading of whisker (less than 10 wt.%), resulting in a strong interfacial interaction between polyethylene and whisker. As a result, the highest tensile strength was observed in this sample even it had a lower orientation compared with that of pure HDPE. For the composite fiber with 10 and 20 wt.% whisker, no obvious formation of hybrid shish-kebab was observed, resulting in a poor interfacial interaction and subsequently, lower tensile strength. That result indicates that the tensile strength of the fibers depends not only on the orientations of the polyethylene and the whisker, more importantly, on the interfacial interaction between matrix and the filler. The change of orientations of the composite fibers by adding whisker and the formation of hybrid shish-kebab structure were discussed based on rheological measurement.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , , ,