Article ID Journal Published Year Pages File Type
821614 Composites Science and Technology 2009 7 Pages PDF
Abstract

A range of polymer–nanotube nanocomposites were produced using different processing routes. Both polymer-grafted and as-grown nanotubes were used and latex and polystyrene matrices investigated. The microstructures of the nanocomposites were studied, mainly by electron microscopy, in terms of the dispersion state of the nanotubes and the polymer–nanotube interface. The mechanical and electrical properties of the composites were also measured. The relationship between the microstructures observed and the resulting physical properties are discussed. It is found that composites with apparently similar microstructures can exhibit similar mechanical properties but very different electrical behaviours. Moreover, the nanocomposites produced using polymer-grafted nanotubes exhibit a clear improvement of the stress at large deformation. Thus, from our results, it appears that the mechanical and electrical properties do not necessarily depend on the same microstructural parameters. However it is still a challenge to simultaneously improve both physical properties.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,