Article ID Journal Published Year Pages File Type
821989 Composites Science and Technology 2009 8 Pages PDF
Abstract

The structural integrity of polypropylene (PP) matrix composites reinforced by natural wood fibers is investigated by digital image correlation (DIC) coupled with tensile tests. The use of the material as an alternative construction material requires extensive understanding of its micromechanical properties, which primarily define its performance. Addition of several additives such as coupling agents is common practice for such materials. These ingredients improve the performance of these materials mainly by improvement of the chemical and physical interactions between the nonpolar matrix and the polar wood fibers. These interactions facilitate the transfer of the applied deformation particularly in the interphase region between the polymer matrix and the reinforcing fibers. Such localized changes can influence the performance of the material specially its micromechanical behavior. The DIC via photogrammetry was used to study the spatial distribution of the accumulated plastic surface strain, which is based on pattern recognition of the surface before and after straining. The heterogeneous strain distribution reveals a structural inhomogeneity of the material. The magnitude of local strain was much higher than the global strain, suggesting preferred regions for plastic deformation formed by the microstructure.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,