Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
822210 | Composites Science and Technology | 2008 | 7 Pages |
A closed form expression to determine the effective flexural modulus of a laminated composite beam is developed and presented in this contribution. This effective flexural modulus is applied to the bending, buckling and free vibration response of generally laminated composite beams with various boundary supports. The expression was developed using the combination of the Euler–Bernoulli beam and classical lamination theory. In addition the results of an extensive finite element analysis are used to validate the analytical model. The comparison of the analytical results, the finite element results and the experimental results showed good correlation. It is also observed that coupling response is an important variable that must be included in the computation of the effective flexural stiffness of generally laminated beam.