Article ID Journal Published Year Pages File Type
822416 Composites Science and Technology 2007 9 Pages PDF
Abstract

The carbon/silicon carbide brake materials were prepared by chemical vapor infiltration (CVI) combined with liquid melt infiltration (LMI). The carbon fiber preform was fabricated with the three dimension needling method. The microstructure, mechanical, thermophysical, and frictional properties of C/SiC composites were investigated. The results indicated that the composites were composed of 65 wt%C, 27 wt%SiC, and 8 wt%Si. The density and porosity were 2.1 g cm−3 and 4.4%, respectively. The C/SiC brake materials exhibited excellent toughness. The average dynamic friction coefficient and static friction coefficient of the materials were about 0.34 and 0.41, respectively. The friction coefficient was stable. The fade ratio of the friction coefficient under moist conditions was about 2.9%. The linear wear rate was less than 1.9 μm side−1 cycle−1. These results show that C/SiC composites have excellent properties for use as brake materials for aircraft.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , ,