Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
822979 | Composites Science and Technology | 2007 | 12 Pages |
The out-of-plane behavior of unreinforced masonry walls strengthened with externally bonded fiber reinforced polymer (FRP) strips is analytically studied. The analytical model uses variational principles, equilibrium requirements, and compatibility conditions between the structural components (masonry units, mortar joints, FRP strips, and adhesive layers) and assumes one-way flexural action of the strengthened wall. The masonry units and the mortar joints are modeled as Timoshenko’s beams. The FRP strips are modeled using the lamination and the first-order shear deformation theories, and the adhesive layers are modeled as 2D linear elastic continua. The model accounts for cracking of the mortar joints and for the development of debonding zones near the cracked joints. Numerical and parametric studies that reveal the capabilities of the model, throw light on the interaction between the variables, and quantitatively explain some aspects of the behavior of the strengthened wall are also presented.