Article ID Journal Published Year Pages File Type
823106 Composites Science and Technology 2006 9 Pages PDF
Abstract

The energy density and forces required to separate nanoropes into individual nanotubes was examined by studying both the dilatation separation of arrays and the peeling of a pair of single wall carbon nanotubes. The cohesive energy per unit length was determined from the universal graphitic potential. The magnitude of the peeling force for a pair of tubes configured in a double cantilever beam was calculated over a range of peeling lengths using a cohesive zone model, and compared to predictions from linear elastic fracture mechanics. The results of the analysis reveal that a linear elastic fracture model that incorporates an inherent initial crack length yields a reasonable estimation of the peeling force–deformation response. The energy of separation for the dilatation mechanism was shown to be a strong function of the array size with twice the energy density necessary to separate an array of three CNT as compared to separation of a large array. Estimates of the energy of peeling separation of 0.30 nJ/m is in good agreement with previous work.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,