Article ID Journal Published Year Pages File Type
823235 Composites Science and Technology 2015 6 Pages PDF
Abstract

The elastic properties of pyrolytic carbon material as a function of texture degree were calculated by means of a homogenization method. The material microstructure is modeled as a system of graphite crystals (inclusions) embedded in an infinite homogeneous matrix with unknown effective (overall) parameters. The texture degrees of carbon planes extracted from the experimental selected-area electron diffraction patterns as well as size of coherent domains extracted from high resolution transmission electron microscopy images have been used as reference points for modeling of material properties. The experimental diffraction curves exhibiting a good fitting with the Gauss density function have been used to simulate the spatial orientation of inclusions. After that the overall elasticity tensor is calculated and the influence of the texture degree of pyrolytic carbon material on the engineering elastic parameters is studied.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,