Article ID Journal Published Year Pages File Type
823480 Comptes Rendus Mécanique 2015 12 Pages PDF
Abstract

In this study, a rational approach is proposed to design a device for inducing swirling flow in heat exchanger pipes, for improved efficiency in the laminar regime. First, 2D computational fluid dynamics results lead to select, among four profiles, the blade profile with the most favorable lift to drag ratio. Then, the fluid flow in the swirler made with the selected blade profile is simulated in 3D, for Reynolds numbers ranging from 50 to 1600. Based on the simulation results, an analytic approximation of the evolution of the tangential fluid velocity is proposed as a function of the Reynolds number.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,