Article ID Journal Published Year Pages File Type
823914 Comptes Rendus Mécanique 2012 14 Pages PDF
Abstract

In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80–90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a birdʼs wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)