Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8247844 | International Journal of Radiation Oncology*Biology*Physics | 2006 | 20 Pages |
Abstract
Conclusions: The MIP model described allows simultaneous optimization over the space of beamlet fluence weights and beam and couch angles. Based on experiments with tumor data, this approach can return good plans that are clinically acceptable and practical. This work distinguishes itself from recent IMRT research in several ways. First, in previous methods beam angles are selected before intensity map optimization. Herein, we employ 0/1 variables to model the set of candidate beams, and thereby allow the optimization process itself to select optimal beams. Second, instead of incorporating dose-volume criteria within the objective function as in previous work, herein, a combination of discrete and continuous variables associated with each voxel provides a mechanism to strictly enforce dose-volume criteria within the constraints. Third, using the construct of critical-normal-tissue-ring within the objective function can enhance the achievement of conformal plans. Based on the three tumor sites considered, it appears that volume and spatial geometry with respect to the PTV are important factors to consider when selecting objectives to optimize, and in estimating how well suited a particular model is for achieving a specified goal.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Radiation
Authors
Eva K. Ph.D., Tim Ph.D., Ian M.D.,