Article ID Journal Published Year Pages File Type
825230 International Journal of Engineering Science 2011 11 Pages PDF
Abstract

Motivated by a desire to incorporate micro- and nanoscale deformation mechanisms into continuum mechanical models of material behavior, we apply recently developed volume-averaged metrics to the results of atomistic simulations to investigate deformation and microrotation in the vicinity of grain boundaries. Three-dimensional bicrystalline structures are employed to study the inelastic deformation behavior under uniaxial tension and simple shear at a temperature of 10 K. Each bicrystal is constructed by molecular statics followed by thermal equilibration under NPT using an embedded atom method potential for copper. Strain is imposed in each simulation cell at a constant 109 s−1 strain rate applied perpendicular and parallel to the grain boundary plane for tension and shear, respectively. A variety of grain boundary deformation mechanisms arise and the resulting deformation and microrotation fields are examined. We also include an analysis showing how microrotation varies as a function of distance from the grain boundary with increasing strain for different grain boundary deformation mechanisms. This work demonstrates that critical interface behavior can be extracted from atomistic simulations using volume-averaged metrics, offering a potential avenue for translating fundamental information to continuum theories of grain boundary deformation in polycrystalline materials.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,