Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8253794 | Chaos, Solitons & Fractals | 2018 | 6 Pages |
Abstract
In this paper, stability analysis is applied to a discrete Lotka-Volterra cooperative system with the periodic boundary conditions, then Turing pattern formation conditions can be derived, theory analysis and numerical simulation show that turing patterns can be realized. In addition, we also pay attention on what reason or what system environment to result into the current state patterns, which can be reduced to estimate or identify the system parameter. A regularization method is applied to parameter inversion, and numerical simulation can verify the effectiveness of the algorithm.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
Li Xu, Jiayi Liu, Guang Zhang,