Article ID Journal Published Year Pages File Type
8256452 Physica D: Nonlinear Phenomena 2014 16 Pages PDF
Abstract
In this article, we analyse bifurcations from stationary stable spots to travelling spots in a planar three-component FitzHugh-Nagumo system that was proposed previously as a phenomenological model of gas-discharge systems. By combining formal analyses, centre-manifold reductions, and detailed numerical continuation studies, we show that, in the parameter regime under consideration, the stationary spot destabilizes either through its zeroth Fourier mode in a Hopf bifurcation or through its first Fourier mode in a pitchfork or drift bifurcation, whilst the remaining Fourier modes appear to create only secondary bifurcations. Pitchfork bifurcations result in travelling spots, and we derive criteria for the criticality of these bifurcations. Our main finding is that supercritical drift bifurcations, leading to stable travelling spots, arise in this model, which does not seem possible for its two-component version.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,