Article ID Journal Published Year Pages File Type
8256472 Physica D: Nonlinear Phenomena 2014 12 Pages PDF
Abstract
Sharp switches in behaviour, like impacts, stick-slip motion, or electrical relays, can be modelled by differential equations with discontinuities. A discontinuity approximates fine details of a switching process that lie beyond a bulk empirical model. The theory of piecewise-smooth dynamics describes what happens assuming we can solve the system of equations across its discontinuity. What this typically neglects is that effects which are vanishingly small outside the discontinuity can have an arbitrarily large effect at the discontinuity itself. Here we show that such behaviour can be incorporated within the standard theory through nonlinear terms, and these introduce multiple sliding modes. We show that the nonlinear terms persist in more precise models, for example when the discontinuity is smoothed out. The nonlinear sliding can be eliminated, however, if the model contains an irremovable level of unknown error, which provides a criterion for systems to obey the standard Filippov laws for sliding dynamics at a discontinuity.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,