Article ID Journal Published Year Pages File Type
8256787 Wave Motion 2018 30 Pages PDF
Abstract
The Extended Thermodynamic theory is used to derive a hyperbolic reaction-diffusion model for Chemotaxis. Linear stability analysis is performed to study the nature of the equilibrium states against uniform and nonuniform perturbations. A particular emphasis is given to the occurrence of the Turing bifurcation. The existence of traveling wave solutions connecting the two steady states is investigated and the governing equations are numerically integrated to validate the analytical results. The propagation of plane harmonic waves is analyzed and the stability regions in terms of the model parameters are shown. The frequency dependence of the phase velocity and of the attenuation is also illustrated. Finally, in order to have a measure of the non linear stability, the propagation of acceleration waves is studied, the wave amplitude is derived and the critical time is evaluated.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,