Article ID Journal Published Year Pages File Type
8256792 Wave Motion 2018 22 Pages PDF
Abstract
The influence of viscoelastic ocean beds on the characteristics of surface waves passing through mangrove forests is analyzed under the assumption of linearized water wave theory in two dimensions. The trunks of the mangroves are assumed to be in the upper-layer inviscid fluid domain, whilst the roots are inside the viscoelastic bed. The associated equation of motion is obtained by coupling the Voigt's model for flow within the viscoelastic medium with the equation of motion in the presence of mangroves. The modified dynamic conditions are coupled with the kinematic conditions to obtain the boundary condition at the free surface and the interface of the two fluids consisting of the upper layer inviscid fluid and the viscoelastic fluid bed. To understand the effects of bed viscosity as well as elasticity on energy dissipation, the complex dispersion relation associated with the plane progressive wave is derived and analyzed. Effect of physical parameters associated with mangroves and viscoelastic bed on wave motion in surface and internal modes are computed and analyzed to understand their roles in attenuating wave effects. The present model will be useful in the better understanding of wave propagation through mangroves in the coastal zone having muddy seabed.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,