Article ID Journal Published Year Pages File Type
82574 Agricultural and Forest Meteorology 2008 11 Pages PDF
Abstract

The Mongolian steppe zone comprises a major part of East Asian grasslands. The objective of this study was to separately evaluate the quantitative dependencies of gross primary production (GPP) and ecosystem respiration (Reco) on the environmental variables of temperature, moisture, radiation, and plant biomass in a semi-arid grassland ecosystem. We determined GPP and Reco using transparent and opaque closed chambers in a grassland dominated by Poaceae species in central Mongolia during five periods: July 2004, May 2005, July 2005, September 2005, and June 2006. Values of GPP were linearly related to live aboveground biomass (AGB) enclosed by the chamber. The amount of GPP per unit ground area differed among the study periods, whereas GPP normalized by the amount of AGB did not differ significantly among the periods, suggesting that plant production per unit green biomass did not depend on the phenological stage. GPP/AGB fit well a rectangular hyperbolic light–response curve for all the study periods. When the air and soil were dry, considerable reduction in GPP was observed. The GPP/AGB ratio was also expressed as individual functions of air temperature, vapor pressure deficit, and volumetric soil water content. Reco was exponentially related to the soil temperature and the relationship was modified by soil moisture. The amount of Reco and its temperature sensitivity (Q10) declined with decreasing soil moisture. Sharp increases of Reco after rainfall events were observed. The values of Reco, even including the rain-induced pulses, were expressed well as a bivariate function of soil temperature and soil moisture near the soil surface.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,