Article ID Journal Published Year Pages File Type
826658 Journal of Bionic Engineering 2014 9 Pages PDF
Abstract

The fluid dynamics of flapping insect wing in ground effect is investigated numerically in this study. To model the insect wing cross-section in forward-flight mode, the laminar flow over a NACA0012 airfoil animated by a combination of harmonic plunge and pitch rotation is considered. To implement the simulation, the proposed immersed boundary-lattice Boltzmann method is employed. By fixing the Reynolds number and the amplitude of motion, we systematically examine the influences of the distance between the foil and the ground and the flapping frequency on the flow behaviors. As compared to the situation out of ground effect, the forces for foil placed in close proximity to the ground show some differences. The mean drag coefficient is increased at low frequency and decreased at high frequency. Meanwhile, the mean lift coefficient is increased at both low and high frequencies and decreased at middle frequency. Moreover, an interesting phenomenon with oblate vortices due to vortex interaction with the ground is observed.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering