Article ID Journal Published Year Pages File Type
826795 Journal of Bionic Engineering 2013 7 Pages PDF
Abstract

The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer. The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry. The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra. Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations, ranging from 1.80 GPa to 12.44 GPa, and from 0.24 GPa to 0.75 GPa, respectively. In general, both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions, which reflects the functional heterogeneity of biological material in the process of biological evolution. The elytra have very low friction coefficient, ranging from 0.037 to 0.079, which is related to their composition and morphology. Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering