Article ID Journal Published Year Pages File Type
8268979 Free Radical Biology and Medicine 2015 9 Pages PDF
Abstract
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , ,