Article ID Journal Published Year Pages File Type
8270660 Free Radical Biology and Medicine 2014 10 Pages PDF
Abstract
Energy substrates metabolized through mitochondria (e.g., pyruvate, glutamine) are required for biosynthesis of macromolecules in proliferating cells. Because several mitochondrial proteins are known to be targets of S-nitrosation, we determined whether bioenergetics are modulated by S-nitrosation and defined the subsequent effects on proliferation. The nitrosating agent S-nitroso-l-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation, and treatment decreased mitochondrial function and inhibited proliferation of MCF7 mammary adenocarcinoma cells. Surprisingly, the d-isomer of CysNO (D-CysNO), which is not transported into cells, also caused mitochondrial dysfunction and limited proliferation. Both L- and D-CysNO also inhibited cellular pyruvate uptake and caused S-nitrosation of thiol groups on monocarboxylate transporter 1, a proton-linked pyruvate transporter. These data demonstrate the importance of mitochondrial metabolism in proliferative responses in breast cancer and highlight a novel role for inhibition of metabolic substrate uptake through S-nitrosation of exofacial protein thiols in cellular responses to nitrosative stress.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , ,