Article ID Journal Published Year Pages File Type
8270826 Free Radical Biology and Medicine 2013 7 Pages PDF
Abstract
Tissue damage caused by ischemia-reperfusion (I/R) injury represents a serious event, which often leads to deterioration or even loss of organ function. I/R injury is associated with transient tissue oxygen deprivation due to vessel occlusion and a subsequent reperfusion period following restoration of blood flow. Initial tissue damage inflicted by ischemia is aggravated in the reperfusion period through mechanisms such as burst of reactive oxygen and nitrogen species and inflammatory reactions. I/R injury occurs during surgical interventions, organ transplantation, diseases such as myocardial infarction, circulatory shock, and toxic insults. Recently, microRNAs have come into focus as powerful regulators of gene expression and potential diagnostic tools during I/R injury. These small noncoding ribonucleotides (~22 nucleotides in length) posttranscriptionally target mRNAs, culminating in suppression of protein synthesis or increase in mRNA degradation, thus fundamentally influencing organ function. This review highlights the latest developments regarding the role of microRNAs in cardiac and renal I/R injury.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , ,