Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8279153 | Journal of the Neurological Sciences | 2013 | 5 Pages |
Abstract
Maintenance of homeostasis in the brain is the result of regulatory adjustments by cellular constituents of the neurovascular unit (pericytes, endothelial cells, astrocytes, and neurons) that include induction of adaptive vascular remodeling. Results from our laboratory and others suggest that aspects of stress induced adaptation are seen in MS and in the murine model of experimental autoimmune encephalomyelitis (EAE), vascular remodeling is ineffective and biometabolic balance is disrupted. In murine white matter, capillary density is 1/2 that observed in gray matter thus disruption of vascular homeostasis will have a profound impact on tissue integrity. We therefore hypothesized that restoration of microvascular angiodynamics would augment tissue plasticity mitigating the extent of secondary injury and sparing cognitive decline in patients with MS. To test this hypothesis, we have performed preclinical studies and characterized changes in angiodynamics in myelin oligodendrocyte glycoprotein (MOG) peptide (35-55)-induced EAE in C57BL/6 mice with or without concomitant exposure to chronic mild low oxygen. We have reported that exposure to chronic mild low oxygen ameliorated clinical disease in EAE. While the mechanisms of protection are unclear, results suggest that normobaric hypoxia stabilizes the stress response, promotes physiological angiogenesis, and is neuroprotective.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Nilufer Esen, Zakhar Serkin, Paula Dore-Duffy,