Article ID Journal Published Year Pages File Type
828927 Materials & Design (1980-2015) 2014 7 Pages PDF
Abstract

•CCG Cu71.8Al17.8Mn10.4 SMAs show a high superelasticity of 10.1%.•Microstructure characteristics of CCG play effective roles to the high SE.•Structure design of high-performance SMAs was discussed and developed.

Through texture and grain boundary control by continuous unidirectional solidification, the continuous columnar-grained polycrystalline Cu71.8Al17.8Mn10.4 shape memory alloys were prepared and possess a strong 〈0 0 1〉 texture along the solidification direction and straight low-energy grain boundary. The alloys show excellent superelasticity of 10.1% improved from 3% for ordinary polycrystalline counterpart and with a tiny residual strain of less than 0.3% after unloading. There are some reasons for the enhanced superelasticity: (1) The martensitic transformation of all grains with strong 〈0 0 1〉-oriented texture occur at the same time under the tensile loading, which can avoid the significant stress concentration problem and transformation strain incompatibility at the grain boundaries due to the high elastic anisotropy in ordinary polycrystalline alloy. (2) High phase transformation strain can be obtained along 〈0 0 1〉 grain orientation. (3) Straight low-energy grain boundary and the absence of grain boundary triple junctions of continuous columnar-grained polycrystals can significantly reduce the blockage of martensitic transformation at the grain boundaries. These results provide a reference to structure design of high-performance polycrystalline Cu-based shape memory alloys.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,