Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
829633 | Materials & Design (1980-2015) | 2014 | 6 Pages |
•The PBO fiber reinforced composites were heated at high temperature.•After heating at 300 °C, the composites had irreversible damage due to the resin.•Above 550 °C, PBO fiber pyrolyzed and affected the composite much.•After heating at 550 °C, the resin matrix pyrolyzed mostly and broke the interface.•After heating at 700 °C, mechanical properties of the composites decreased much.
Thermal degradation behaviors of the poly(p-phenylene benzobisoxazole) (PBO) fiber and phenolic resin matrix were investigated. The unidirectional PBO fiber reinforced phenolic resin composite material laminates were fabricated and exposed in a muffle furnace of 300 °C, 550 °C, 700 °C, and 800 °C for 5 min, respectively, to study the effects of thermal treatment on mechanical properties of the composites. After undergone thermal treatments at 300 °C, 550 °C and 700 °C for 5 min, the flexural strength was reduced by 17%, 37% and 80%, respectively, the flexural modulus was decreased by 5%, 14% and 48%, respectively, and the interlaminar shear strength (ILSS) was lowered by 12%, 48% and 80%, respectively. Thermal treatment at 300 °C, the phenolic resin began to pyrolyze and shrink resulted in the irreversible damage of the composites. After 550 °C thermal treatment, the phenolic resin pyrolyzed mostly but the PBO fiber had no obvious pyrolyze, the interface had sever broken. After 700 °C thermal treatment, the phenolic resin formed amorphous carbonaceous and PBO fiber pyrolyzed mostly so the mechanical properties dropped dramatically. At being heated at 800 °C for 5 min, the fiber was nearly totally pyrolyzed and and kept fibrous carbonaceous although the specimen became too brittle to stand any load thereon.