Article ID Journal Published Year Pages File Type
829651 Materials & Design (1980-2015) 2014 7 Pages PDF
Abstract

•Sapphire and Inconel 600 were successfully joined by vacuum brazing.•The brazing area formed two “ocean” structures and one reaction layer.•The brazed joint at 900°C for 30 min yielded the maximum shear strength of 58.5 MPa.

In this research, sapphire as a ceramic was brazed to Inconel 600 as a metal with a commercially available Cusil ABA (63Ag–1.75Ti–35.25Cu) filler foil as braze alloy where Cu/Ni porous composite introduced as an interlayer so it could be used in a particular gas pressure sensor application. Several brazing processes were carried out in a high vacuum furnace in order to investigate the effects of brazing parameters on the joint interface and mechanical properties. The common brazing temperature and time were in the ranges of 830–900 °C and 15–30 min respectively, while vacuum pressure was remained constant at 1 × 10−4 Pa. SEM-EDS and XRD analyses of the joint microstructure and interface composition revealed five distinct phases; Ni3Ti, AlNi, Cr1.97Ti1.07, Fe0.2Ni4.8Ti5, (TiO1.06)3.32. The brazing area formed two “ocean” structures near to Inconel and sapphire interfaces whereas a reaction layer was developed at the surface of Inconel 600. Under the mechanical property analyses the brazed joint at 900 °C for 30 min obtained the maximum shear strength of 58.5 MPa which is adequate for particular gas pressure sensor application.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,