Article ID Journal Published Year Pages File Type
830297 Materials & Design (1980-2015) 2013 11 Pages PDF
Abstract

A transversely isotropic continuum elasto-viscoplasticity model is formulated to capture the tensile and creep behaviors of a directionally solidified (DS) nickel-base superalloy. A fourth-order tensor is introduced to model material anisotropy. The Kachanov damage evolution equation is coupled with stress tensor to improve capability of modeling creep deformation. This model is implemented as an ABAQUS user material (UMAT) subroutine using a self-adaptive explicit integration scheme. A grouping optimization strategy is employed to identify the material parameters by fitting experimental curves of isothermal tension and creep loading at high temperature. Failure mechanisms are investigated by observing the fracture morphology by means of Scanning Electron Microscope (SEM) with the Energy Dispersive X-ray Spectrometer (EDXS). The results obtained showed that Chaboche constitutive model coupled with anisotropy and creep damage was able to characterize the rate-dependent anisotropic tensile and creep behaviors of DS superalloy and the simulation results agreed well with the experimental data. The tensile fracture surface of DS superalloy mainly contained a mixture of large cleavage planes and small amount of dimples. Meanwhile, the creep fracture mechanism of DS superalloy at 760 and 850 °C was transgranular fracture induced by the dimple accumulation. The morphology of the dimples and non-metallic inclusions at 760 °C was different from that at 850 °C.

► Propose a modified Chaboche model to describe mechanical behavior of DS superalloy. ► Use an explicit integration method to achieve FEM calculation of the constitutive model. ► Develop a new grouping optimization method to identify the material parameters. ► Study the fracture mechanisms of tensile and creep specimens of DS superalloy.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,