Article ID Journal Published Year Pages File Type
830338 Materials & Design (1980-2015) 2013 5 Pages PDF
Abstract

In order to tailor the fiber–matrix interface of continuous silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites for improved fracture toughness, alternating pyrolytic carbon/silicon carbide (PyC/SiC) multilayer coatings were applied to the KD-I SiC fibers using chemical vapor deposition (CVD) method. Three dimensional (3D) KD-I SiCf/SiC composites reinforced by these coated fibers were fabricated using a precursor infiltration and pyrolysis (PIP) process. The interfacial characteristics were determined by the fiber push-out test and microstructural examination using scanning electron microscopy (SEM). The effect of interface coatings on composite mechanical properties was evaluated by single-edge notched beam (SENB) test and three-point bending test. The results indicate that the PyC/SiC multilayer coatings led to an optimum interfacial bonding between fibers and matrix and greatly improved the fracture toughness of the composites.

► Superior combination of flexural strength and fracture toughness of the 3D SiC/SiC composite was achieved by interface tailoring. ► Resulted composite possesses a much higher flexural strength and fracture toughness than its counterparts in literatures. ► Mechanisms that PyC/SiC multilayer coatings improve the mechanical properties were illustrated.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,