Article ID Journal Published Year Pages File Type
830376 Materials & Design (1980-2015) 2013 7 Pages PDF
Abstract

The effects of composite layer stiffness, thickness and ply orientations on stresses in the adhesive layer of a double lap bonded joint are investigated using three-dimensional finite element analysis code ABAQUS. A special 3-layer modelling technique is used in the finite element analysis. The non-linear behaviour of adhesive is also considered. Six composite laminates with different ply orientations are used in the lap-joint analysis. The composite materials considered in the analysis are – carbon epoxy, boron epoxy, T300/934 graphite-epoxy, and aramid epoxy. The analysis results indicate that the maximum stress in the adhesive can be significantly reduced by changing the stiffness and fibre orientations in the composite layer. Also, the use of hybrid composite (changing the nature of the fibres in two layers which are near the adhesive layer) results in reducing adhesive shear stresses.

► We analysis the maximal stresses distribution in the adhesive and the adherend for double lap joint. ► We modified the mechanical properties of adherend layer to decreases the stresses in adhesive layer. ► Then, we analysis the influence of modifying the types of fibers on maximal stresses distributions. ► We analysis the thickness modifications of some layers on maximal stresses distribution. ► In last, we analysis the combination of different modifications on maximal stresses distribution.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,