Article ID Journal Published Year Pages File Type
830992 Materials & Design (1980-2015) 2012 6 Pages PDF
Abstract

The characteristics of laser lap welding of AZ31B magnesium alloy to Zn-coated steel were investigated. Welding was difficult when the laser beam was irradiated onto the AZ31B alloy and the processing parameters were set to obtain a keyhole welding mode. The difference in the physical properties between the two materials resulted in unstable welding process particularly when the laser beam penetrated into the steel specimen and a keyhole was formed therein. By switching to a conduction mode, the process stability was improved and successful welding could be achieved because the liquid metal film remained unbroken and the laser beam did not penetrate into the material. A 25 mm wide joint failed in tensile shear testing at loads exceeding 6000 N. This high joint strength was attributed to the formation of a 450 nm thick layer of Fe3Al intermetallic compound on the steel surface as a result of the interaction between Al from the AZ31B alloy and Fe. The presence of Zn-coating layer was essential to eliminate the negative effects of oxides on the joining process.

► Magnesium alloy was successfully laser welded to Zn-coated steel. ► The joint strength exceeded 6000 N on a 25 mm wide specimen. ► A 450 nm thick layer of Fe3Al was uniformly formed on the steel surface.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,