Article ID Journal Published Year Pages File Type
831680 Materials & Design (1980-2015) 2011 14 Pages PDF
Abstract

Energy absorption capacity and collapse of cylindrical and square thin-walled aluminum tubes with a crack shaped trigger under axial compression are studied in this paper. Furthermore, the effects of length, angle, location and situation of cracks on the mechanical behavior of tubes are investigated. The results of this research show that the cracks change the collapse processes and folding modes; this effects are greater for the cylindrical tubes; the maximum load is reduced between 4.92% and 31.33% for cylindrical and between 2.55% and 18.52% for square tubes; the cracks increase the crush force efficiency up to 67.03% and 31.06%, and absorbed energy up to 30.45% and 30.16% for cylindrical and square tubes, respectively. The maximum load for all of the cracked tubes is less than that of intact tubes and increasing the crack angle from 0° to 45° decreases the maximum load and from 45° to 60° increases it. Finally, parallel cracks are more effective than perpendicular cracks.

► Increasing cracks angles from 0° to 45° decreases maximum crushing load. ► Parallel cracks are more effective than perpendicular ones. ► Cylindrical specimens are more sensitive to crack especially for shorter cracks. ► Specific absorbed energy for cylindrical tubes is greater than those of square ones.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,